
LAMMPS with CUDA for Dummies

I. Sticco∗ and F. Cornes†

Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Pabellón I, Ciudad Universitaria, 1428 Buenos Aires, Argentina.

G.A. Frank‡

Universidad Tecnológica Nacional, Facultad Regional Buenos Aires,
Av. Medrano 951, 1179 Buenos Aires, Argentina.

(Dated: March 5, 2018)

This article is intended as a starting point in the art of simulation. We will try to make it easy...

PACS numbers: DuMMy, 1.2.me

I. WHERE ARE WE STANDING?

We assume that you managed to configure a basic
system (that is, a single multi-core machine) with one
Graphic Processing Unit (GPU). The GPU is supposed
to be CUDA capable and is currently ready for running
code. We further assume that you are already familiar
with lammps. If you are not in this situation, we
recommend our tutorials “Computer configuration for
Dummies (from scratch)” and “Lammps for Dummies”
(both documents) .

The challenge is now to run lammps on the CUDA
capable GPU. lammps people explain that four configu-
ration steps are needed in order to run lammps’s scripts
for CUDA. The steps are as follows

(1) Build the lammps GPU library and lammps files.

(2) Set the number of GPU’s per node and the mpirun
options.

(3) Change the lammps scripts accordingly.

A. Build the lammps files

lammps does not ship with all the library and con-
figuration files ready to use. This is because lammps

needs specific information on the system that is running.
At least three parameters are required: the compute
capability of the installed GPU, the precision, number
of streaming multi-processors (SM), the g++ current ver-
sion and the value of the CUDA environmental variables.

In order to get the compute capability of your GPU,
look into

∗ ignaciosticco@gmail.com
† fercornes@gmail.com
‡ guillermo.frank@gmail.com

http://www.nvidia.com/object/cuda_gpus.html

We will continue with the same example as in “Com-
puter configuration for Dummies (from scratch)”, that
is, with a GeForce GTX980 graphic card installed in the
system. Thus, it is straight forward from this website
that the compute capability equals 5.2. You can further
search in the web for the file

GeForce_GTX_980_Whitepaper_FINAL.PDF

and check that the SM number is 16.

The environmental variables can be checked through
the env or printenv commands. The LD_LIBRARY_PATH
variable equals /usr/local/cuda-9.1/lib64. The
lib64 means that the GPU operates in 64 bits (double
precision).

The g++ current version can be obtained by typ-
ing g++ --version. The returned version number is
6.3.0 20170516.

A summary of all this information is listed below

compute capability: 5.2

streaming multi-processors (SM): 16

presicion: 64 bits

g++ version: 6.3.0 20170516

PATH=/usr/local/cuda-9.1/bin

CUDA_HOME=/usr/local/cuda-9.1

LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64

This information is enough (till now) to build the
lammps GPU library. The library is in

/home/me/mydir/lammps-31Mar17/lib/gpu

Move to this directory. You will find many files, but
the important ones (at this stage of the configuration)
are

Makefile.linux

Makefile.linux.double

Makefile.linux.mixed

2

You may choose Makefile.linux.double as the
source file for building the library since the precision of
the current GPU is double (64 bits). Open this file, com-
ment the line CUDA_ARCH = -arch=sm_21 and replace it
with the line CUDA_ARCH = -arch=sm_52 since the com-
pute capability is 5.2. You may further check that sm_52
is an allowed values by typing nvcc --help. Look for the
lines

--gpu-architecture <arch>

...

Allowed values for this option: ’compute_30’,

’compute_32’,’compute_35’, ’compute_37’,

’compute_50’,’compute_52’,’compute_53’,

’compute_60’,’compute_61’, ’compute_62’,

’compute_70’,’compute_72’,’sm_30’, ’sm_32’ ,

’sm_35’,’sm_37’,’sm_50’,’sm_52’,’sm_53’,’sm_60’,

’sm_61’,’sm_62’,’sm_70’,’sm_72’.

(Warning: if this option is not correctly set, you will
experience some kind of error when running a lammps

script)

The CUDA_HOME line and the CUDA_PRECISION line re-
mains the same since the default values are compatible
with the collected information. Thus, you are now able
to build the library by typing

make -f Makefile.linux.double

You will see lots of compilation information running
through the screen. Just wait a few minutes (be patient).

Check if the files libgpu.a and Makefile.lammps were
created. That’s fine! Also try ./nvc_get_devices and
to produce the following report

Using platform:

NVIDIA Corporation NVIDIA CUDA Driver

CUDA Driver Version: 9.10

Device 0: "GeForce GTX 980"

Type of device: GPU

Compute capability: 5.2

Double precision support: Yes

Total amount of global memory: 3.94153 GB

Number of compute units/multiprocessors: 16

Number of cores: 3072

Total amount of constant memory: 65536 bytes

Total local/shared memory per block: 49152 bytes

Total registers available per block: 65536

Warp size: 32

Maximum number of threads per block: 1024

Maximum group size (threads per block)

1024 x 1024 x 64

Maximum item sizes (threads per dim)

2147483647 x 65535 x 65535

Maximum memory pitch (bytes): 2147483647

Texture alignment: 512 bytes

Clock rate: 1.2155 GHz

Run time limit on kernels: No

Integrated: No

Support host page-locked memory mapping: Yes

Compute mode: Default

Concurrent kernel execution: Yes

Device has ECC support enabled: No

Everything looks fine! Congratulations, you are almost
done! Just include the GPU package as usual. We choose
to include this package into the mpi build (do not try the
serial build!). Type

cd /home/me/mydir/lammps-31Mar17/src

make yes-gpu

make mpi

Notice from the given report that a lot of code for
the GPU has been added to lmp_mpi. That is all!
Installation finished!

B. Test the lammps GPU configuration

This section corresponds to the items (2) and (3)
mentioned at the beginning of the document. Both items
deal with either the scripts writing and the command
line switches required for running the script in the GPU.
However, we are allowed to replace the command line
switches by some extra lines inside the scripts.

The very first example to try corresponds to the fol-
lowing script

units lj

atom_style atomic

lattice sc 0.1111 origin 0.5 0.5 0.5

region box block 0 30 0 30 0 30 units box

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 2.0 87287 dist gaussian

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.2 bin

neigh_modify every 10 delay 0 check no

fix 1 all nve

thermo 50

run 2500

This is a simple Lennard-Jones(12,6) system with peri-
odic boundary conditions. The total number of particles
is 2744. The simulation runs through “neighbor lists”.
To run this script, type (assuming that the lammps src
directory is in the path)

lmp_mpi -i in.lammps

3

where in.lammps is the name of the script file. You can
further type

mpirun -n 4 lmp_mpi -i in.lammps

in order to run four simultaneous processes through the
mpi protocol.

To run this script through the single GPU in the sys-
tem, it is necessary to introduce two changes

1. Add the following first line package gpu 1

2. Replace the command pair_style lj/cut 2.5 by
pair_style lj/cut/gpu 2.5

You should receive the following report

LAMMPS (31 Mar 2017)

Lattice spacing in x,y,z = 2.08015 2.08015 2.08015

Created orthogonal box = (0 0 0) to (30 30 30)

1 by 1 by 1 MPI processor grid

Created 2744 atoms

--

- Using acceleration for lj/cut:

- with 1 proc(s) per device.

--

Device 0: GeForce GTX 980, 16 CUs, 3.9/3.9 GB, 1.2 GHZ (Double Precision)

--

Initializing Device and compiling on process 0...Done.

Initializing Device 0 on core 0...Done.

Setting up Verlet run ...

Unit style : lj

Current step : 0

Time step : 0.005

Per MPI rank memory allocation (min/avg/max) = 2.084 | 2.084 | 2.084 Mbytes

Step Temp E_pair E_mol TotEng Press

0 2 -0.13584096 0 2.8630657 0.17591932

50 2.0835998 -0.26207998 0 2.8621807 0.2012439

100 2.2340769 -0.489748 0 2.8601462 0.2284795

...

...

2400 2.2949948 -0.58940312 0 2.8518346 0.23073706

2450 2.2993636 -0.59553711 0 2.8522514 0.22313226

2500 2.2993162 -0.59495139 0 2.852766 0.22164144

Loop time of 1.9205 on 1 procs for 2500 steps with 2744 atoms

Performance: 562352.161 tau/day, 1301.741 timesteps/s

20.6% CPU use with 1 MPI tasks x no OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time |%varavg| %total

Pair | 1.5275 | 1.5275 | 1.5275 | 0.0 | 79.54

Neigh | 0.00041532 | 0.00041532 | 0.00041532 | 0.0 | 0.02

Comm | 0.1416 | 0.1416 | 0.1416 | 0.0 | 7.37

Output | 0.0028753 | 0.0028753 | 0.0028753 | 0.0 | 0.15

Modify | 0.19741 | 0.19741 | 0.19741 | 0.0 | 10.28

Other | | 0.05069 | | | 2.64

Nlocal: 2744 ave 2744 max 2744 min

Histogram: 1 0 0 0 0 0 0 0 0 0

Nghost: 1692 ave 1692 max 1692 min

Histogram: 1 0 0 0 0 0 0 0 0 0

Neighs: 0 ave 0 max 0 min

Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 0

Ave neighs/atom = 0

Neighbor list builds = 250

Dangerous builds not checked

Device Time Info (average):

Data Transfer: 0.0670 s.

Data Cast/Pack: 0.1318 s.

Neighbor copy: 0.0003 s.

Neighbor build: 0.1685 s.

Force calc: 0.0732 s.

Device Overhead: 0.0679 s.

Average split: 1.0000.

Threads / atom: 4.

Max Mem / Proc: 3.98 MB.

CPU Driver_Time: 0.2851 s.

CPU Idle_Time: 0.4523 s.

Please see the log.cite file for references relevant to this simulation

Total wall time: 0:00:02

Great! You made it! The GPU configuration is up and
running!.

Just in case that you receive an error message or you
want to compile again the GPU package, remember to
do

cd /home/me/mydir/lammps-31Mar17/src

make no-gpu

cd /home/me/mydir/lammps-31Mar17/lib/gpu

make -f Makefile.linux.double clean

before you compile the package. Enjoy!

